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Bevezető
Jelen oktatási segédanyag a II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem (II. 
RFKME) „A Oktatás” képzési terület, A4.09 Középfokú oktatás (Informatika) sza-
kos hallgatói számára készült. A jegyzet elsődleges célja, hogy átfogó és struk-
turált útmutatást nyújtson a „Valószínűségszámítás és matematikai statisztika” 
tantárgy elsajátításához, különös tekintettel az első, „Véletlen események” elne-
vezésű modulra. A kiadvány hiánypótló jelleggel bír, amennyiben a magyar tan-
nyelvű felsőoktatásban részt vevő kárpátaljai informatikus hallgatók speciális 
igényeit és előtanulmányait tartja szem előtt.

A valószínűségszámítás a modern matematika és az informatika egyik legdina-
mikusabban fejlődő területe. Az itt tárgyalt ismeretek elengedhetetlenek a szto-
chasztikus folyamatok megértéséhez, amelyek a számítástudomány számos terü-
letén – az algoritmuselmélettől az adatbányászaton át a mesterséges intelligen-
ciáig – kulcsszerepet játszanak. A kurzus és a hozzá tartozó jegyzet célja, hogy 
a leendő szakembereket olyan mélységben ismertesse meg a valószínűségszámí-
tás és a matematikai statisztika alapjaival, amely elegendő a szakirodalom önálló 
tanulmányozásához és a valószínűségi feladatok önálló megoldásához.

A jegyzet felépítése szervesen illeszkedik a tantárgyi program (szillabusz) köve-
telményrendszeréhez. A tananyag a valószínűség fogalmának axiomatikus meg-
alapozásától indulva tárgyalja a véletlen eseményeket, az eseményalgebra műve-
leteit, valamint a kombinatorika releváns elemeit. Kiemelt figyelmet fordítunk a 
klasszikus és geometriai valószínűségi mezők, a feltételes valószínűség, valamint 
a teljes valószínűség tételének tárgyalására. 

A tantárgy teljesítése és a jegyzet feldolgozása során a hallgatók az alábbi, a kép-
zési programban rögzített kompetenciák elsajátítását és fejlesztését valósítják 
meg:

Általános kompetenciák:

- ÁK2: A hallgató elsajátítja a tantárgyi terület és a szakmai tevékenység
mélyreható ismeretét ésmegértését, különös tekintettel a sztochasztikus fo-
lyamatok matematikai alapjaira.

- ÁK 3: Képessé válik az államnyelven történő szóbeli és írásbeli kommuni-
kációra, valamint az idegen nyelvű szakmai kommunikációra a szakterüle-
ten belül, elsajátítva a valószínűségszámítás terminológiáját.

- ÁK 5: Kialakul a képesség az autonóm cselekvésre és a megalapozott dön-
téshozatalra a szakmai tevékenység során. A hallgató felelősséget vállal a
feladatok végrehajtásáért, és etikusan, a hatályos jogszabályok figyelembe-
vételével jár el.

Szakmai (speciális) kompetenciák:
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- SzK10: A hallgató képessé válik a modern informatika tudományos tényei-
nek, koncepcióinak, elméleteinek és módszereinek alkalmazására az infor-
matika oktatási gyakorlatában.

- SzK11: Elsajátítja az információs modellezés módszereit; képessé válik in-
formációs modellek megvalósítására infokommunikációs eszközökkel, szá-
mítógépes kísérletek elvégzésére, valamint az eredmények értelmezésére,
elemzésére és általánosítására.

- SzK 12: Képesség a feladatmegoldó algoritmusok fejlesztésének és kuta-
tásának korszerű módszereinek alkalmazására objektumok és folyamatok
modellezésében, valamint ezen algoritmusok implementálására modern

programozási nyelveken.

- SzK 15: Képessé válik az iskolai informatika tananyagához kapcsolódó, kü-
lönböző nehézségi szintű feladatok megoldására, a megoldások hatékony-
ságának elemzésére és értékelésére, valamint a megfelelő készségek kiala-
kítására a tanulókban.

A szakmai felkészültség elmélyítését az alábbi program-specifikus tanulási ered-
mények garantálják:

Program tanulási eredmények (PRN):
- TE2: Demonstrálja a tanulók államnyelven történő oktatásának képessé-
gét; fejleszti a tanulók kommunikációs készségeit a tantárgy és az integrált
oktatás eszközeivel.

- TE8: Megalapozott szakmai véleményeket generál a szakterületen mind a
szakemberek, mind a szélesebb közönség számára államnyelven és idegen
nyelven.

- TE 9: Professzionális tevékenysége során alkalmazza a korszerű informá-
ciós és kommunikációs, valamint digitális technológiákat.

- TE10: Demonstrálja a tudományos információk keresésének korszerű tech-
nológiáinak ismeretét önképzés céljából, és alkalmazza azokat szakmai te-
vékenységében.

- TE 11: Csapatmunkára való készséget mutat, képes alkalmazkodni és csele-
kedni új helyzetekben, biztosítva az esélyegyenlőséget a szakmai tevékeny-
ség során.

- TE 13: Ismeri a szakmai tevékenységre vonatkozó jogi szabályozást, és dön-
téseit az emberi jogok tiszteletben tartásával hozza meg.

- TE 14: Meghatározza az informatika szakterületi struktúráját, helyét a tu-
dományok rendszerében, és elmagyarázza az informatikai technológiák fej-
lődési perspektíváit és társadalmi jelentőségét.

- TE 15: Ismeri és érti az információs technológiák fizikai, logikai és mate-
matikai alapjait; elmagyarázza és alkalmazza az adatok kódolási eljárásait.
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- TE 18: Meghatározza és alkalmazza az algoritmusok fejlesztésének és ku-
tatásának módszereit.

- TE 21: Információsmodelleket hoz létre, azokat infokommunikációs eszkö-
zökkel megvalósítja, kutatást végez, az eredményeket értelmezi és általáno-
sítja.

- TE 22: Képes algoritmusokat implementálni programozási nyelveken, kivá-
lasztani a megfelelő technológiákat, és megoldani különböző szintű iskolai
informatika feladatokat.

- TE 23: Érti és megvalósítja az informatika oktatásának korszerű módszer-
tanait és oktatástechnológiai eljárásait a kerettantervi követelmények telje-
sítése érdekében.

A jegyzet módszertana támogatja a fenti eredmények elérését. Az elméleti ré-
szek (tételek, bizonyítások) a logikus gondolkodást és a matematikai alapokat
(TE15) erősítik. A gyakorlati példák és az önálló feladatok megoldása a modelle-
zési (SzK11, TE21) és algoritmus-elemzési (SzK12, TE18) kompetenciákat hivatott
fejleszteni.

Különösen fontos hangsúlyozni, hogy a jegyzet nem helyettesíti az előadásokon
való részvételt, hanem kiegészíti azt. A szillabuszban meghatározott követelmé-
nyek szerint az elméleti tudás mellett a gyakorlati alkalmazás képessége is el-
várás, amelyet a szemináriumi munka és az egyéni feladatmegoldás mélyít el.
A jegyzetben található levezetések és magyarázatok segítik a hallgatókat abban,
hogy a vizsgaidőszakban esedékes szóbeli vizsgára felkészüljenek.

Bízunk benne, hogy jelen összeállítás hatékonyan segíti a hallgatókat a valószí-
nűségszámítás világában való eligazodásban, és stabil alapot biztosít számukra
jövőbeli pedagógiai és informatikai pályafutásukhoz.
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1 Véletlen kísérletek és események

1. Véletlen kísérletek és események alapjai
A valószínűségszámítás alapvető tárgya a véletlen jelenség (vagy véletlen kísér-
let).

Definíció: Véletlen jelenségnek nevezzük azt, aminek a kimenetelét a figyelem-
be vett feltételek nem határozzák meg egyértelműen. Ezzel szemben a determi-
nisztikus jelenségeknél a feltételek egyértelműen meghatározzák a bekövetke-
zést.

Tömegjelenségek: Ha egy véletlen jelenség sokszor ismétlődik azonos vagy kö-
zel azonos körülmények között, véletlen tömegjelenségről beszélünk (pl. radio-
aktív bomlás vagy szerencsejátékok).

Eseménytér és események:
- A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük (jelölésük
gyakran ω). Ezek jellemzője, hogy csak egyféleképpen következhetnek be.

- Az összes elemi esemény halmazát eseménytérnek (Ω) nevezzük.

- Az eseményeket halmazokkal azonosítjuk: az események az eseménytér
részhalmazai (A ⊆ Ω).

Két kitüntetett esemény létezik:

- Biztos esemény: Mindig bekövetkezik, jele Ω (az alaphalmaz).

- Lehetetlen esemény: Soha nem következik be, jele ∅ (üres halmaz).

1.1 Műveletek eseményekkel
Mivel az eseményeket halmazokként kezeljük, a köztük értelmezett műveletek
megfelelnek a halmazelméleti és logikai műveleteknek.

- Összeg (Unió): A+B (vagy A∪B). Akkor következik be, ha A vagy B, vagy
mindkettő bekövetkezik (azaz legalább az egyikük).

- Szorzat (Metszet): A · B (vagy A ∩ B, AB). Akkor következik be, ha A és B
is bekövetkezik.

- Ellentett (Komplementer): A. Akkor következik be, ha A nem következik
be.

- Különbség: A−B (vagy A \B). Akkor következik be, ha A bekövetkezik, de
B nem.

Kizáró események: Két esemény, A és B kizárja egymást (diszjunktak), ha egy-
szerre nem következhetnek be, azaz szorzatuk a lehetetlen esemény:

A · B = ∅ (1)
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1.2 Műveleti tulajdonságok és bizonyítások
Az események közötti műveletekre érvényesek a halmazalgebra szabályai. Az
alábbiakban néhány fontos tulajdonságot és azok bizonyítását ismertetem a for-
rások alapján.

A) Elemi esemény és tetszőleges esemény szorzata

Állítás: Ha A egy elemi esemény és B tetszőleges esemény, akkor a szorzatuk
vagy maga az A esemény, vagy a lehetetlen esemény.

Bizonyítás: Mivel A és B események, a szorzatuk (AB) része A-nak (AB ⊆ A).
Mivel A elemi esemény, definíció szerint nincsenek valódi részhalmazai (csak
önmaga és az üres halmaz). Ezért AB csak A vagy ∅ lehet. Ha A eleme B-nek
(azaz A bekövetkezése maga után vonja B-t), akkor AB = A, ellenkező esetben
AB = ∅.

B) Az összeg felbontása kizáró eseményekre

Gyakran szükséges események összegét páronként kizáró események összegére
bontani.

Állítás: Tetszőleges A és B eseményre A + B = A + AB, ahol a jobb oldalon álló
tagok kizárják egymást.

Bizonyítás: A halmazelméleti definíciók alapján:

- Az A + B (unió) azon elemi eseményeket tartalmazza, amelyek benne van-
nak A-ban vagy B-ben.

- Az AB (azaz B − A) esemény azon elemeket tartalmazza, amelyek B-ben
benne vannak, de A-ban nincsenek.

- Ha A-hoz hozzáadjuk azokat, amelyek csak B-ben vannak (AB), megkapjuk
az uniót.

- Belátható, hogy A és AB diszjunktak, hiszen A · (AB) = (A ·A) ·B = ∅ ·B = ∅.

Tehát az egyenlőség fennáll és a tagok kizáróak.

C) Disztributivitás a kivonásra nézve

Állítás: A szorzás disztributív a kivonásra nézve, azaz A(B − C) = AB − AC.

Bizonyítás (Halmazelméleti úton): A bizonyítás a halmazelméleti azonosságokon
alapul.

- Bal oldal: A(B − C) = A(B · C) = A · B · C. Ez azt jelenti, hogy az esemény
akkor következik be, ha A és B bekövetkezik, de C nem.

- Jobb oldal: AB − AC = (A · B)− (A · C) = (A · B) · (A · C).

A De Morgan-szabályt alkalmazva a jobb oldalra:

(A · B) · (A+ C) = (A · B · A) + (A · B · C)
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Mivel A · A = ∅, az első tag kiesik:

∅ · B + A · B · C = ∅+ A · B · C = A · B · C

A két oldal megegyezik, az állítást igazoltuk.

D) De Morgan-azonosságok

Ezek az azonosságok alapvetőek az eseményekkel való számolásban.

Állítás: A+B = A · B és A · B = A+B.

Magyarázat/Bizonyítás logikai úton:

- Az első állítás (A+B) azt jelenti, hogy nem következik be sem A, sem B. Ez
egyenértékű azzal, hogy A sem következik be (A) és B sem következik be
(B), azaz A · B.

- Amásodik állítás (A · B) azt jelenti, hogy nem igaz, hogymindkettő bekövet-
kezik. Ez akkor teljesül, ha legalább az egyik nem következik be, azaz vagy
A nem történik meg (A), vagy B nem történik meg (B), ami éppen A+B.

Összefoglaló műveleti tulajdonságok

A források alapján az eseményalgebra legfontosabb, bizonyítás nélkül is gyakran
felhasznált tulajdonságai:

- Idempotencia: A+ A = A, A · A = A.

- Kommutativitás: A+B = B + A, A · B = B · A.

- Asszociativitás: A+ (B + C) = (A+B) + C.

- Disztributivitás: A(B + C) = AB + AC.

Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:

1. Mi a különbség a véletlen jelenség és a determinisztikus jelenség között?

2. Definiálja a biztos eseményt és a lehetetlen eseményt, és adja meg a jelölé-
süket!

3. Mikor mondjuk két eseményről, hogy kizárják egymást? Írja fel ezt mate-
matikai jelöléssel is!

4. Fogalmazza meg a De Morgan-azonosságokat eseményekre vonatkozóan!

5. Bizonyítsa be, hogy tetszőleges A és B eseményre A+B = A+ AB!
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2 Kolmogorov-féle valószínűségi mező

2.1 Eseményalgebrák (σ-algebrák)
A valószínűségszámítás matematikai alapjait halmazelméleti struktúrák alkot-
ják. Legyen Ω egy nem üres halmaz, amelyet eseménytérnek nevezünk (az elemi
események halmaza). Az események az Ω bizonyos részhalmazai, amelyek egy
A (vagy F) jelű rendszerbe tartoznak.

Definíció: Az Ω részhalmazainak A rendszerét σ-algebrának (eseményalgebrá-
nak) nevezzük, ha teljesülnek az alábbiak:

- A biztos esemény eleme a rendszernek: Ω ∈ A.

- Zárt a komplementerképzésre: Ha A ∈ A, akkor az ellentettje, A ∈ A.

- Zárt a megszámlálható unióra: Ha A1, A2, · · · ∈ A eseménysorozat, akkor az
összegük,

∪∞
i=1 Ai ∈ A.

Ebből a definícióból levezethető, hogy a σ-algebra zárt a megszámlálható met-
szetre is (a de Morgan-azonosságok miatt), és tartalmazza a lehetetlen eseményt
(∅).

2.2 Kolmogorov-féle valószínűségi mező
A valószínűségszámítás axiomatikus felépítését A. N. Kolmogorov dolgozta ki. Az
(Ω,A, P ) hármast Kolmogorov-féle valószínűségi mezőnek nevezzük, ha:

- Ω az eseménytér.

- A az események σ-algebrája.

- P : A → R egy valószínűségi mérték (függvény), amelyre teljesülnek az
alábbi axiómák:

(P1) Nemnegativitás: Minden A ∈ A esetén P (A) ≥ 0.

(P2) Normáltság: P (Ω) = 1.

(P3) σ-additivitás (Megszámlálhatóadditivitás): HaA1, A2, . . . páronként
kizáró események (azaz AiAj = ∅, ha i ̸= j), akkor:

P

(
∞∪
n=1

An

)
=

∞∑
n=1

P (An)

2.3 Valószínűségszámítási alaptételek és bizonyításaik
Az axiómákból közvetlenül levezethetők a legfontosabb tulajdonságok.

A) A lehetetlen esemény valószínűsége

Tétel: P (∅) = 0.
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Bizonyítás: A σ-additivitás axiómájában válasszuk az A1 = Ω és Ai = ∅ (i ≥ 2)
eseményeket. Ezek páronként kizáróak. Ekkor

∑
Ai = Ω. Az axióma alapján:

P (Ω) = P (Ω) +
∑

P (∅). Mivel P (Ω) = 1, ebből következik, hogy a nemnegatív
tagok összege csak akkor lehet véges és változatlan, ha P (∅) = 0.

B) Véges additivitás

Tétel: Ha A és B egymást kizáró események, akkor P (A+B) = P (A) + P (B).

Bizonyítás: Ez a σ-additivitás speciális esete, ha a sorozat további tagjait üres
halmaznak választjuk (A3 = A4 = · · · = ∅), és felhasználjuk, hogy P (∅) = 0.

C) Komplementer (ellentett) esemény

Tétel: P (A) = 1− P (A).

Bizonyítás: Mivel A és A kizárják egymást és összegük Ω, a véges additivitás és
a normáltság miatt: P (A) + P (A) = P (A + A) = P (Ω) = 1. Ebből átrendezéssel
adódik az állítás.

D) Monotonitás

Tétel: Ha B ⊆ A, akkor P (B) ≤ P (A).

Bizonyítás: Az A esemény felbontható A = B + (A \ B) diszjunkt részekre. Az
additivitás miatt P (A) = P (B) + P (A \B). Mivel P (A \B) ≥ 0, ezért P (A) ≥ P (B).

2.4 A valószínűség folytonossága
Tétel A valószínűség folytonos.

A egy ekvivalencia-tételt fogunk bizonyítani (, amely megmutatja, hogy a véges
additivitás feltételezése mellett a σ-additivitás egyenértékű a folytonossági tulaj-
donságokkal. A bizonyítás láncolatos szerkezetű: 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 1).

A tétel állításai (ekvivalens feltételek):

1. σ-additivitás: Ha An páronként diszjunktak, akkor P (∪An) =
∑

P (An).

2. Folytonosság növekvő sorozatra: Ha A1 ⊂ A2 ⊂ . . . (növekvő sorozat),
akkor limn→∞ P (An) = P (

∪∞
n=1 An).

3. Folytonosság csökkenő sorozatra: Ha A1 ⊃ A2 ⊃ . . . (csökkenő sorozat),
akkor limn→∞ P (An) = P (

∩∞
n=1 An).

4. Folytonosság az üres halmazban (”a nullában”): Ha A1 ⊃ A2 ⊃ . . . és∩∞
n=1 An = ∅, akkor limn→∞ P (An) = 0.

A bizonyítás lépései a forrás alapján:
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1. lépés: 1) ⇒ 2) (A σ-additivitásból következik a növekvő folytonosság)

Legyen A1 ⊂ A2 ⊂ . . . egy növekvő eseménysorozat. Jelölje A =
∪∞

n=1 An. Képez-
zünk diszjunkt eseményeket a következőképpen: Let B1 = A1, és Bn = An \ An−1

minden n = 2, 3, . . . esetén. Ekkor a Bn események páronként kizáróak, és az uni-
ójuk megegyezik az eredeti sorozat uniójával:

∪∞
k=1 Bk = A. Továbbá az első n

darab B uniója éppen An:
∪n

k=1 Bk = An. A σ-additivitás (1-es pont) miatt:

P (A) = P

(
∞∪
k=1

Bk

)
=

∞∑
k=1

P (Bk) = lim
n→∞

n∑
k=1

P (Bk)

Mivel
∑n

k=1 P (Bk) = P (
∪n

k=1 Bk) = P (An) (a véges additivitás miatt), ezért:

P (A) = lim
n→∞

P (An)

Ezzel az állítást igazoltuk.

2. lépés: 2) ⇒ 3) (A növekvő folytonosságból következik a csökkenő)

Legyen A1 ⊃ A2 ⊃ . . . csökkenő sorozat. Ekkor a komplementereik sorozata, An,
növekvő sorozatot alkot (An ⊂ An+1). Alkalmazzuk a 2) pontot a komplemente-
rekre:

lim
n→∞

P (An) = P

(
∞∪
n=1

An

)
A de Morgan-szabályok alapján az unió komplementere a metszet, így

∪
An =∩

An. Felhasználva, hogy P (A) = 1− P (A):

lim
n→∞

(1− P (An)) = 1− P

(
∞∩
n=1

An

)
Az egyenletet rendezve kapjuk: limP (An) = P (

∩
An).

3. lépés: 3) ⇒ 4) (A csökkenő folytonosságból következik a nullában való
folytonosság)

Ez a lépés a 3-as pont speciális esete. Ha a csökkenő sorozat metszete az üres
halmaz (

∩
An = ∅), akkor a 3) pont szerint:

lim
n→∞

P (An) = P (∅)

Mivel P (∅) = 0, ezért limP (An) = 0.

4. lépés: 4) ⇒ 1) (Anullábanvaló folytonosságból következika σ-additivitás)

Legyenek A1, A2, . . . páronként kizáró események, és legyen A =
∪∞

k=1 Ak. Defini-
áljuk a maradéktagot (a sorozat ”farkát”):

Cn =
∞∪

k=n+1

Ak = A \
n∪

k=1

Ak
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A Cn sorozat csökkenő (Cn ⊃ Cn+1), és a közös részük üres (
∩∞

n=1 Cn = ∅). A 4)
feltétel szerint ekkor limn→∞ P (Cn) = 0. A véges additivitás miatt felírhatjuk az A
valószínűségét:

P (A) = P

(
n∪

k=1

Ak ∪ Cn

)
=

n∑
k=1

P (Ak) + P (Cn)

Vegyükmindkét oldal határértékétn → ∞ esetén. MivelP (A)konstans és limP (Cn) =
0:

P (A) = lim
n→∞

n∑
k=1

P (Ak) + 0 =
∞∑
k=1

P (Ak)

Ezzel visszajutottunk az 1) ponthoz, igazolva a σ-additivitást. Fejezet végi kérdé-
sek

Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:

1. Mi a σ-algebra definíciója? Sorolja fel a három tulajdonságát!

2. Ismertesse a Kolmogorov-féle valószínűségi mező axiómáit (P1, P2, P3)!

3. Bizonyítsa be az axiómák alapján, hogy a lehetetlen esemény valószínűsége
0!

4. Mit mond ki a monotonitás tétele?

5. Fogalmazza meg a valószínűség folytonossági tételét növekvő eseményso-
rozatra!

3 Klasszikus és geometriai valószínűségi mezők

3.1 Klasszikus valószínűségi mező
A klasszikus valószínűségi modell olyan kísérletek leírására alkalmazható, ahol
a lehetséges kimenetelek (elemi események) száma véges, és nincs okunk felté-
telezni, hogy bármelyik kimenetel valószínűbb lenne a másiknál (azaz az elemi
események „egyenlően valószínűek”).

Bizonyítás a P (A) = m/n képletre

Egy A esemény valószínűsége a kedvező kimenetelek (m) és az összes lehetséges
kimenetel (n) hányadosa:

Feltételek: Tekintsünk egy kísérletet, amelynek véges számú, n darab elemi ese-
ménye (kimenetele) van. Jelölje az eseményteret Ω = {ω1, . . . , ωn}.
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Egyenlő valószínűség: Mivel a klasszikus modellben az elemi események egy-
formán valószínűek, mindegyikhez ugyanazt a p valószínűséget rendeljük:

P (ωi) = p

Normálás: Tudjuk, hogy az összes elemi esemény valószínűségének összege 1
(mivel az egyikük biztosan bekövetkezik). Ezért:

n∑
i=1

P (ωi) = 1 =⇒
n∑

i=1

p = 1

Mivel az összeg n darab p tagból áll:

n · p = 1 =⇒ p =
1

n

Tehát minden egyes elemi esemény valószínűsége 1/n.

Az A esemény valószínűsége: Legyen A egy tetszőleges esemény, amely m da-
rab elemi eseményből áll (ezek a „kedvező” esetek). Jelölje ezt: A = {ωi1 , . . . , ωim}.

Összegzés: A valószínűség additivitása miatt az A esemény valószínűsége az őt
alkotó elemi események valószínűségének összege:

P (A) =
m∑
k=1

P (ωik) =
m∑
k=1

1

n

Mivel az összegben m darab tag szerepel:

P (A) = m · 1
n
=

m

n

Következtetés: A klasszikus definíció szerint egy A esemény valószínűsége a
kedvező esetek számának (m) és az összes lehetséges, egyenlően valószínű eset
számának (n) hányadosa. (Más forrásokban ezt gyakran k/n vagy k/N alakban
jelölik).

3.2 Geometriai valószínűség
A geometriai valószínűséget akkor használjuk, ha a kísérlet lehetséges kimene-
teleinek száma végtelen (nem megszámlálható), és a kimenetelek egy folytonos
tartományt (pl. egyenest, síkidomot vagy térbeli testet) alkotnak.

- Definíció: Legyen az eseménytér Ω az Rn egy véges mértékű (hosszúságú,
területű vagy térfogatú) tartománya. A kísérlet során véletlenszerűen vá-
lasztunk egy pontot ebből a tartományból. Feltételezzük, hogy annak a való-
színűsége, hogy a pont az Ω egy A résztartományába esik, nem a tartomány
elhelyezkedésétől, hanem csak a mértékétől függ, és azzal arányos.
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- Képlet: Ham(Ω) jelöli az egész eseménytér mértékét (pl. területét), ésm(A)
a kedvező tartomány mértékét, akkor:

P (A) =
m(A)

m(Ω)

ahol m a Lebesgue-mértéket (hossz, terület, térfogat) jelöli.

- Példa: A „találkozási probléma” (két személy érkezése egy adott időinter-
vallumban) tipikus példa, amely geometriai valószínűséggel oldható meg
úgy, hogy az eseményteret egy négyzetnek tekintjük a síkon, a kedvező ese-
ményeket pedig a négyzeten belüli sáv területének.

Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:

1. Mi a klasszikus valószínűségimező alapvető feltétele az elemi eseményekre
vonatkozóan?

2. Vezesse le a klasszikus valószínűség P (A) = m/n képletét!

3. Mi a különbség a klasszikus és a geometriai valószínűségi modell alkalma-
zási feltételei között?

4. Írja fel a geometriai valószínűség kiszámításának képletét és magyarázza a
jelöléseket!

5. Mondjon példát olyan problémára, amely geometriai valószínűséggel old-
ható meg!

4 Feltételes valószínűség

4.1 A feltételes valószínűség
Definíció: Ha A és B két esemény és P (B) > 0, akkor az A esemény B-re vonat-
kozó feltételes valószínűségét a következőképpen definiáljuk:

P (A|B) =
P (AB)

P (B)

ahol P (AB) az A és B együttes bekövetkezésének (szorzatának) a valószínűsége.

Szemléletes jelentés és indoklás: A fogalom bevezetése a relatív gyakorisá-
gok viselkedésén alapul. Ha egy kísérletet n-szer elvégzünk, és a B esemény kB
alkalommal következik be, míg az A és B egyszerre kAB alkalommal, akkor a B
bekövetkezései közül az A relatív gyakorisága kAB/kB. Ezt átalakítva:

kAB

kB
=

kAB/n

kB/n
≈ P (AB)

P (B)
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Ez indokolja a fenti definíciót. A feltételes valószínűség lényegében az esemény-
térnek a B eseményre való „leszűkítését” jelenti.

Tétel (Feltételes valószínűségi mező): Rögzített B esemény esetén (P (B) > 0),
a P (·|B) feltételes valószínűség rendelkezik a valószínűség összes tulajdonságá-
val (Kolmogorov-axiómák), azaz P (B|B) = 1, nemnegatív, és σ-additív.

4.2 A szorzási szabály (Szorzástétel)
A feltételes valószínűség definíciójából közvetlenül adódik a szorzási szabály,
amely lehetővé teszi két vagy több esemény együttes bekövetkezésének kiszá-
mítását.

Két eseményre: Ha P (A) > 0 és P (B) > 0, akkor:

P (AB) = P (A)P (B|A) = P (B)P (A|B)

Ez a tétel azt fejezi ki, hogy az együttes bekövetkezés valószínűsége egyenlő az
egyik esemény valószínűségének és a másik esemény (az elsőre vonatkozó) fel-
tételes valószínűségének szorzatával.

Általánosításneseményre (Általános szorzási szabály): LegyenekA1, A2, . . . , An

olyan események, amelyekre P (A1A2 . . . An−1) > 0. Ekkor:

P (A1A2 . . . An) = P (A1) · P (A2|A1) · P (A3|A1A2) · · · · · P (An|A1 . . . An−1)

Bizonyítás

A) Két eseményre vonatkozó szabály bizonyítása: A bizonyítás közvetlenül a
definícióból következik.

- Induljunk ki a feltételes valószínűség definíciójából: P (A|B) = P (AB)
P (B)

.

- Szorozzuk meg az egyenlet mindkét oldalát P (B)-vel (feltéve, hogy P (B) >
0).

- Kapjuk: P (AB) = P (A|B)P (B).

- Hasonlóan, P (B|A) = P (AB)
P (A)

alapján P (AB) = P (B|A)P (A).

B) Az általános (n eseményre vonatkozó) szabály bizonyítása: A bizonyítás
a definíció ismételt alkalmazásával (vagy teljes indukcióval) történik. Írjuk fel a
jobb oldalt a feltételes valószínűségek definícióit behelyettesítve:

P (A1) ·
P (A1A2)

P (A1)
· P (A1A2A3)

P (A1A2)
· · · · · P (A1 . . . An)

P (A1 . . . An−1)

A feltételek miatt a nevezők nem nullák. A szorzatban a közbülső tagok egysze-
rűsítik egymást (teleszkopikus szorzat):

- P (A1) kiesik az első tört nevezőjével.

- P (A1A2) kiesik a második tört nevezőjével, és így tovább.
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- Végül csak a legutolsó számlálómaradmeg: P (A1A2 . . . An). Ezzel az azonos-
ságot igazoltuk.

Alkalmazási példa (Húzás visszatevés nélkül): Ha egy urnából golyókat hú-
zunk visszatevés nélkül, a szorzási szabály segítségével számolhatjuk ki a való-
színűségeket. Például, ha 32 lapos kártyából húzunk, annak valószínűsége, hogy
a piros 10-es és a piros 7-es egy kézbe kerül (például az első játékoshoz, aki 12
lapot kap), a szorzási szabály és a kombinatorika segítségével is levezethető.

4.3 A teljes valószínűség tétele
Előfeltétel: Teljes eseményrendszer. Egy H = {B1, B2, . . . } (vagy H1, H2, . . . )
eseményrendszert teljes eseményrendszernek nevezünk, ha az események pá-
ronként kizárják egymást (azaz Bi ∩ Bj = ∅, ha i ̸= j), és összegük a biztos ese-
mény (

∑
Bi = Ω). A gyakorlatban a Bi eseményeket gyakran hipotéziseknek is

nevezik.

Tétel: Legyen B1, B2, . . . egy pozitív valószínűségű eseményekből álló teljes ese-
ményrendszer (azaz P (Bi) > 0). Ekkor tetszőleges A esemény valószínűsége ki-
számítható az alábbi képlettel:

P (A) =
∑
i

P (A|Bi)P (Bi)

(Véges esetben az összegzés n-ig tart, megszámlálhatóan végtelen esetben a vég-
telenig).

Bizonyítás

- Felbontás: Mivel a {Bi} rendszer teljes, azaz
∑

Bi = Ω, az A eseményt fel-
írhatjuk a biztos eseménnyel való metszeteként:

A = A · Ω = A ·

(∑
i

Bi

)
=
∑
i

(A · Bi)

Ez azt jelenti, hogy az A esemény felbontható a Bi eseményekkel alkotott
szorzataira (metszeteire).

- Additivitás: Mivel a Bi események páronként kizárják egymást (BiBj = ∅),
ezért azA·Bi események is páronként kizáróak. A valószínűség σ-additivitási
axiómája (vagy véges esetben a véges additivitás) miatt az összeg valószí-
nűsége a valószínűségek összege:

P (A) = P

(∑
i

ABi

)
=
∑
i

P (ABi)

- Szorzási szabály: A feltételes valószínűség definíciójából

P (A|B) = P (AB)/P (B)
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átrendezéssel kapjuk a szorzási szabályt: P (ABi) = P (A|Bi)P (Bi). Ezt behe-
lyettesítve a fenti összegbe megkapjuk a tételt:

P (A) =
∑
i

P (A|Bi)P (Bi)

4.4 Bayes-tétele
Ez a tétel lehetővé teszi, hogy egy esemény (A) bekövetkezése után felülvizsgáljuk
a teljes eseményrendszer tagjainak (Bi hipotézisek) valószínűségét (ezt nevezzük
aposzteriori valószínűségnek).

Tétel: Legyen B1, B2, . . . egy teljes eseményrendszer pozitív valószínűségekkel,
és legyen A egy olyan esemény, amelyre P (A) > 0. Ekkor bármely i indexre:

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

Bizonyítás

- Definíció: Induljunk ki a feltételes valószínűség definíciójából a P (Bi|A)-ra
vonatkozóan:

P (Bi|A) =
P (BiA)

P (A)

(A forrásokban a metszetet gyakran egymás mellé írással jelölik: P (BiA)
vagy P (ABi)).

- Számláló átalakítása: A szorzási szabályt alkalmazva a számlálóra

P (ABi) = P (A|Bi)P (Bi)

, az egyenlet így alakul:

P (Bi|A) =
P (A|Bi)P (Bi)

P (A)

- Nevező kifejtése: A nevezőben szereplő P (A) valószínűséget a teljes való-
színűség tételével fejtjük ki (P (A) =

∑
j P (A|Bj)P (Bj)). Ezt behelyettesítve

a nevezőbe megkapjuk a Bayes-formulát:

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)
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Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:

1. Definiálja a feltételes valószínűséget!

2. Írja fel a szorzási szabályt két eseményre!

3. Mit nevezünk teljes eseményrendszernek?

4. Mondja ki a teljes valószínűség tételét!

5. Írja fel a Bayes-tételt és magyarázza meg, mire használjuk!

5 Események függetlensége. Borel-Cantelli lemma
A valószínűségszámításban a függetlenség azt a szemléletes tartalmat ragadja
meg, hogy az egyik esemény bekövetkezése nem befolyásolja a másik esemény
bekövetkezésének esélyét.

5.1 Események függetlensége
Két esemény függetlensége

Két esemény, A és B függetlenségének szemléletes megközelítése a feltételes va-
lószínűségen alapul: A akkor független B-től, ha P (A|B) = P (A) (feltéve, hogy
P (B) > 0). Mivel ez a definíció nem szimmetrikus és nemkezeli a 0 valószínűségű
eseményeket, a szakirodalom a szorzási szabályt tekinti a formális definíciónak.

Definíció: Az A és B eseményeket függetlennek nevezzük, ha:

P (AB) = P (A)P (B)

ahol AB az események együttes bekövetkezését (metszetét) jelöli.

Magyarázat és tulajdonságok:
- Szemléletes jelentés: Ha az egyik esemény bekövetkezéseiről információt
szerzünk, az nem változtatja meg a másik esemény valószínűségét. Példá-
ul, ha egy kockával 6-ost dobunk, az nem befolyásolja egy tőle függetlenül
feldobott érme fej vagy írás eredményét.

- Szélsőséges esetek: EgyA esemény akkor és csak akkor független bármely
más eseménytől, ha P (A) = 0 vagy P (A) = 1.

- Kapcsolat a kizárással: Ha A és B pozitív valószínűségű események és
kizárják egymást (azaz AB = ∅), akkor nem lehetnek függetlenek, hiszen
P (AB) = 0, míg P (A)P (B) > 0. A függetlenség és a kizáróság tehát különbö-
ző fogalmak.
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Több esemény függetlensége

Több esemény esetén megkülönböztetjük a páronkénti és a teljes (vagy együttes)
függetlenséget.

- Páronkénti függetlenség: AzA1, A2, . . . eseményeket páronként független-
nek nevezzük, ha közülük bármely két különböző esemény független, azaz
P (AiAj) = P (Ai)P (Aj)minden i ̸= j esetén.

- Teljes (együttes) függetlenség: AzA1, . . . , An eseményeket teljesen függet-
lennek nevezzük, ha közülük akárhány különböző eseményt kiválasztva,
azok szorzatának valószínűsége megegyezik a valószínűségek szorzatával.
Formálisan, bármely k darab (2 ≤ k ≤ n) indexre:

P (Ai1Ai2 . . . Aik) = P (Ai1)P (Ai2) . . . P (Aik)

Fontos különbség: Apáronkénti függetlenségből nemkövetkezik a teljes függet-
lenség. Lehetséges, hogyháromeseménypáronként független (P (AB) = P (A)P (B),
stb.), de együttesen már nem azok (pl. P (ABC) ̸= P (A)P (B)P (C)).

Végtelen eseményrendszerek: Egy tetszőleges (akár végtelen) eseményrend-
szert akkor nevezünk függetlennek, ha annak bármely véges részrendszere tel-
jesen független.

5.2 Borel-Cantelli lemma
A Borel-Cantelli lemma a valószínűségszámítás egyik legfontosabb eredménye,
amely végtelen sok esemény bekövetkezésének valószínűségéről szól. A tétel két
állításból áll.

Lemma (Borel-Cantelli)
a) rész (Konvergencia eset): Legyen A1, A2, . . . események tetszőleges sorozata.
Ha az események valószínűségeinek összege véges, azaz

∞∑
n=1

P (An) < ∞,

akkor 1 a valószínűsége annak, hogy az An események közül csak véges sok kö-
vetkezik be (azaz 0 a valószínűsége, hogy végtelen sok következik be).

b) rész (Divergencia eset - függetlenséggel): Legyenek az A1, A2, . . . események
függetlenek. Ha a valószínűségeik összege végtelen, azaz

∞∑
n=1

P (An) = ∞,

akkor 1 a valószínűsége annak, hogy az An események közül végtelen sok bekö-
vetkezik.

Magyarázat:
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- Az a) rész azt mondja ki, hogy ha az események ”ritkák” (a valószínűsége-
ik összege konvergens), akkor ”hosszú távon” biztosan nem fognak újra és
újra megtörténni; egy idő után már nem következnek be. Ez az állítás nem
követeli meg a függetlenséget.

- A b) rész azt állítja, hogy ha az eseményeknek van egyminimális ”sűrűsége”
(a sor divergens) és egymástól függetlenek, akkor biztosan végtelen sokszor
be fognak következni. Itt a függetlenség feltétele kritikus.

Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:

1. Definíció szerint mikor nevezünk két eseményt függetlennek?

2. Lehet-e két egymást kizáró, pozitív valószínűségű esemény független? In-
dokolja!

3. Következik-e a páronkénti függetlenségből a teljes függetlenség?

4. Mit állít a Borel-Cantelli lemma a) része (konvergencia eset)?

5. Melyik esetben szükséges a függetlenség feltétele a Borel-Cantelli lemmá-
nál?

6 Bernoulli-féle kísérlet sorozat

6.1 Bernoulli-féle kísérletsorozat és a képlet
A kísérletsorozat lényege: Tekintsünk egy kísérletet, amelyben egy A esemény
p valószínűséggel következik be (ahol 0 < p < 1). Ismételjük meg ezt a kísér-
letet n-szer egymástól függetlenül. Ezt nevezzük véges Bernoulli-féle kísérletso-
rozatnak. Ebben a kísérletsorozatban az A esemény bekövetkezéseinek számát
gyakran ξ-vel jelöljük, amely egy binomiális eloszlású valószínűségi változó.

A valószínűség kiszámítása: Annak a valószínűsége, hogy az n kísérletből az
A esemény pontosan k-szor következik be (jelölje ezt Pk vagy P (ξ = k)), az alábbi
képlettel számítható ki:

P (ξ = k) =

(
n

k

)
pk(1− p)n−k

ahol k = 0, 1, . . . , n.

Aképletmagyarázata: Aképlet felépítése a következő gondolatmeneten alapul:

- Egy konkrét sorozat valószínűsége: Ha egy konkrét kimenetelsorozatot
tekintünk, amelyben k darab ”sikeres” (A bekövetkezett) és n− k darab ”si-
kertelen” (az A ellentettje következett be) kísérlet van, akkor – a független-
ségmiatt – ezek valószínűségei összeszorzódnak. Így egyetlen ilyen konkrét
sorozat valószínűsége: pk(1− p)n−k.
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- A sorozatok száma: Az n kísérlet során a k darab sikeres esemény többféle
sorrendben is előfordulhat. Annak a száma, ahogyan az n kísérletből kivá-
laszthatjuk azt a k-t, ahol az A esemény bekövetkezett, a binomiális együtt-
hatóval adható meg:

(
n
k

)
.

- Összegzés: Mivel ezek a sorozatok egymást kizáró események, a teljes va-
lószínűséget a lehetséges esetek számának és egy eset valószínűségének a
szorzata adja.

6.2 Hányszor következik be az A esemény a legnagyobb való-
színűséggel?

Azt a k értéket, amelynél a P (ξ = k) valószínűség a legnagyobb, az eloszlás mó-
duszának nevezzük. A valószínűségek növekednek, amíg k el nem ér egy bizo-
nyos értéket, utána pedig csökkennek.

A legvalószínűbb bekövetkezések száma (k) az alábbi egyenlőtlenség alapján
határozható meg:

(n+ 1)p− 1 < k ≤ (n+ 1)p

A maximális valószínűségű kimenetel(ek)re két eset lehetséges:

- Egyetlen legvalószínűbb érték: Ha (n+ 1)p nem egész szám, akkor a leg-
valószínűbb bekövetkezések száma egyértelmű.

- Két legvalószínűbb érték: Ha (n + 1)p egész szám, akkor két olyan érték
is van, amelynek a valószínűsége egyenlő és maximális. Ezek az értékek:

k1 = (n+ 1)p− 1

k2 = (n+ 1)p

Tehát az A esemény leggyakrabban az (n + 1)p érték egészrészének megfelelő
alkalommal következik be.

Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:

1. Mi a Bernoulli-féle kísérletsorozat definíciója?

2. Írja fel a binomiális eloszlás képletét, és magyarázza meg a benne szereplő
tagokat!

3. Mit nevezünk egy valószínűségi eloszlás móduszának ebben a kontextus-
ban?

4. Milyen egyenlőtlenséggel határozható meg a legvalószínűbb bekövetkezé-
sek száma?

5. Mikor van két legvalószínűbb értéke a bekövetkezések számának?
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7 A Moivre-Laplace lokális határeloszlás tétele
Tétel: Tekintsünk n számú független kísérletet (Bernoulli-kísérletsorozat), ahol
egyA esemény bekövetkezésének valószínűségeminden kísérletben p (0 < p < 1),
a be nem következésé pedig q = 1− p. Jelölje Pn(k) annak a valószínűségét, hogy
az esemény pontosan k-szor következik be.

Ha n → ∞, akkor azokra a k értékekre, amelyekre az x = k−np√
npq

mennyiség egy
korlátos [a, b] intervallumbanmarad, egyenletesen teljesül a következő közelítés:

Pn(k) ≈
1

√
npq

· 1√
2π

e−
x2

2

Röviden jelölve a standard normális eloszlás sűrűségfüggvényével (ϕ(x)):

lim
n→∞

√
npq · Pn(k)

ϕ(x)
= 1

ahol x = k−np√
npq

.

Bizonyítás
Abizonyítás aBernoulli-képletből indul ki, és a faktoriálisok közelítésére a Stirling-
formulát használja.

A Bernoulli-képlet és a Stirling-formula. Induljunk ki a Bernoulli-képletből:

Pn(k) =

(
n

k

)
pkqn−k =

n!

k!(n− k)!
pkqn−k

Nagy n és k esetén alkalmazzuk a Stirling-formulát (n! ≈
√
2πnnne−n):

Pn(k) ≈
√
2πnnne−n

√
2πkkke−k

√
2π(n− k)(n− k)n−ke−(n−k)

pkqn−k

Az e−n és e−ke−(n−k) tagok kiesnek. Rendezés után:

Pn(k) ≈
√

n

2πk(n− k)

(np
k

)k ( nq

n− k

)n−k

Vezessük be az x változót a standardizáláshoz:

x =
k − np
√
npq

=⇒ k = np+ x
√
npq

Ebből kifejezhető n− k is:

n− k = n− (np+ x
√
npq) = n(1− p)− x

√
npq = nq − x

√
npq

Helyettesítsük ezeket a gyök alatti kifejezésbe:√
n

2πk(n− k)
=

1√
2πnpq

·
√

np · nq
k(n− k)

≈ 1√
2πnpq
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(Mivel n → ∞ esetén a k/np és (n− k)/nq hányadosok 1-hez tartanak).

A kifejezés exponenciális részének vizsgálatához vegyük a logaritmusát a
(
np
k

)k ( nq
n−k

)n−k

szorzatnak. Jelölje ezt A:

lnA = −k ln
(

k

np

)
− (n− k) ln

(
n− k

nq

)
Behelyettesítve a k és n− k kifejezéseit:

k

np
= 1 + x

√
q

np
,

n− k

nq
= 1− x

√
p

nq

Használjuk a Taylor-sorfejtést (ln(1 + u) ≈ u− u2

2
+O(u3)):

ln
(

k

np

)
≈ x

√
q

np
− x2q

2np

ln
(
n− k

nq

)
≈ −x

√
p

nq
− x2p

2nq

Helyettesítsük vissza ezeket az lnA kifejezésbe:

lnA ≈ − (np+ x
√
npq)

(
x

√
q

np
− x2q

2np

)
− (nq − x

√
npq)

(
−x

√
p

nq
− x2p

2nq

)
A szorzások elvégzése és a tagok egyszerűsítése után (a magasabb rendű tagok
O(1/

√
n) nagyságrendűek és 0-hoz tartanak) a következőt kapjuk:

lnA ≈ −x2

2

Visszatérve az eredeti kifejezéshez (A = elnA):

Pn(k) ≈
1√

2πnpq
e−

x2

2 =
1

√
npq

ϕ(x)

Ezzel a tétel bizonyítást nyert.

Jelentősége
Ez a tétel biztosítja, hogy nagy kísérletszám esetén a binomiális eloszlás valószí-
nűségei (a hisztogram) nagyon jól közelíthetők a normális eloszlás haranggörbé-
jével (sűrűségfüggvényével).

Önellenőrző kérdések
Válaszoljon az alábbi kérdésekre a fejezet anyaga alapján:
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1. Milyen típusú kísérletsorozatra vonatkozik a tétel, és milyen feltételeknek
kell teljesülniük a p valószínűségre?

2. Mi a definíciója az x változónak a tételben szereplő közelítés során?

3. Melyik matematikai formulát használjuk a bizonyítás során a faktoriálisok
közelítésére nagy n és k esetén?

4. Mi történik a Pn(k) és a normális eloszlás sűrűségfüggvényének kapcsolatá-
val, ha n tart a végtelenhez?

5. Gyakorlati szempontból miért jelentős ez a tétel a binomiális eloszlás és a
normális eloszlás kapcsolatában?
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Fogalomtár
Aposzteriori valószínűség Az esemény bekövetkezése utáni, a Bayes-tétel se-
gítségével felülvizsgált valószínűség. Jelölése általában P (Bi|A).

Apriori valószínűség Az esemény bekövetkezése előtti, előzetes ismereteken
alapuló valószínűség. Jelölése általában P (Bi).

Axióma Olyan alapvető állítás, amelyet bizonyítás nélkül igaznak fogadunk el,
és amelyre egy elmélet épül. (Lásd: Kolmogorov-axiómák).

Bayes-tétel Tétel, amely megadja, hogyan változik egy hipotézis valószínűsé-
ge új információk (egy esemény bekövetkezése) fényében. Kapcsolatot teremt a
P (B|A) és P (A|B) között.

Bernoulli-kísérlet Olyan véletlen kísérlet, amelynek pontosan két lehetséges
kimenetele van: ”siker” (A) és ”kudarc” (A), rögzített valószínűségekkel.

Bernoulli-sorozat Ugyanazon Bernoulli-kísérlet n-szeri, egymástól független
végrehajtása.

Binomiális eloszlás Diszkrét valószínűségi eloszlás, amely megadja a sikeres
kimenetelek számának valószínűségét n független Bernoulli-kísérlet során.

Biztos esemény (Ω) Olyan esemény, amely a kísérlet minden végrehajtásakor
szükségszerűen bekövetkezik. Valószínűsége 1.

Borel-Cantelli lemma Tétel, amely végtelen sok esemény bekövetkezésének
valószínűségéről szól. Két része van: konvergencia (véges sokszor következik
be) és divergencia (végtelen sokszor következik be).

De Morgan-azonosságok Halmazelméleti és logikai összefüggések, melyek az
unió és a metszet komplementerét írják le: A+B = A · B és A · B = A+B.

Determinisztikus jelenség Olyan jelenség, amelynél a körülmények egyértel-
műen meghatározzák a kimenetelt (nincs véletlen).

Diszjunkt halmazok Olyan halmazok (események), amelyeknek nincs közös
elemük, metszetük az üres halmaz. Lásd: Kizáró események.

Disztributivitás Aműveletek közötti széttagolhatóság tulajdonsága. Pl. A(B+
C) = AB + AC.

Elemi esemény (ω) Akísérlet lehetséges, továbbnembontható kimenetele. Csak
egyféleképpen következhet be.

Ellentett esemény (Komplementer) AzA esemény, amely pontosan akkor kö-
vetkezik be, ha A nem következik be.

Eloszlásfüggvény Függvény, amely megadja annak a valószínűségét, hogy egy
valószínűségi változó értéke kisebb, mint egy adott x szám.

Esemény (A) Az elemi eseményekhalmazának egy részhalmaza (A ⊆ Ω), amely-
ről állítható, hogy bekövetkezett vagy nem.

Eseményalgebra (σ-algebra) Az eseménytér részhalmazainak olyan rendsze-
re, amely zárt a komplementerképzésre és a megszámlálható unióra.
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Eseménytér (Ω) A véletlen kísérlet összes lehetséges elemi eseményének hal-
maza.

Feltételes valószínűség Egy esemény bekövetkezésének valószínűsége, felté-
ve, hogy egy másik esemény már bekövetkezett. Jele: P (A|B).

Folytonos valószínűségi változó Olyanvalószínűségi változó, amely egy adott
intervallumon belül bármilyen értéket felvehet (pl. idő, hossz).

Független események Két esemény független, ha az egyik bekövetkezése nem
befolyásolja a másik valószínűségét. Formálisan: P (AB) = P (A)P (B).

Geometriai valószínűség Olyanvalószínűségimodell, ahol az eseménytér egy
folytonos tartomány, és a valószínűség arányos a részhalmaz mértékével (hossz,
terület, térfogat).

Hipotézis A teljes eseményrendszer elemei a Bayes-tételben (B1, B2, . . . ), ame-
lyek közül pontosan egy igaz.

Hisztogram Gyakorisági eloszlás grafikus ábrázolása oszlopdiagram formájá-
ban.

Kísérlet Egy folyamat vagy cselekvés megfigyelése, amelynek kimenetele bi-
zonytalan (véletlen kísérlet).

Kizáró események Olyan események, amelyek egyszerrenemkövetkezhetnek
be (AB = ∅).

Klasszikus valószínűségi mező Olyan modell, ahol az eseménytér véges szá-
mú elemi eseményből áll, és ezek mindegyike egyenlően valószínű.

Kolmogorov-féle valószínűségi mező Avalószínűségszámítás axiomatikusmo-
dellje, amelyet az (Ω,A, P ) hármas alkot.

Lehetetlen esemény (∅) Olyan esemény, amely soha nem következhet be. Va-
lószínűsége 0.

Legvalószínűbb érték (Módusz) A binomiális eloszlásnál az a k érték, amely-
re a P (ξ = k) valószínűség maximális.

Metszet (Szorzat esemény) Az A · B esemény, amely akkor következik be, ha
A és B is bekövetkezik.

Moivre-Laplace tétel Határeloszlás tétel, amely kimondja, hogy nagy kísérlet-
szám esetén a binomiális eloszlás a normális eloszlással közelíthető.

Monotonitás A valószínűség azon tulajdonsága, hogy ha A ⊆ B, akkor P (A) ≤
P (B).

Nagy számok törvénye (Implikált) Elv, amely szerint a kísérletek számának
növelésével a relatív gyakoriság a valódi valószínűséghez tart.

Nemnegativitás Kolmogorov egyik axiómája: minden esemény valószínűsége
nagyobb vagy egyenlő, mint 0.

Normális eloszlás A legfontosabb folytonos valószínűségi eloszlás, ”harang-
görbe” alakú sűrűségfüggvénnyel.
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Normáltság Kolmogorov egyik axiómája: a biztos esemény valószínűsége 1.

Páronkénti függetlenség Események egy halmazára igaz, ha bármely két ki-
választott esemény független egymástól. (Nem implikálja a teljes függetlenséget).

Relatív gyakoriság Egy esemény bekövetkezésének száma osztva a kísérletek
számával (k/n).

Standard normális eloszlás Olyan normális eloszlás, amelynek várható érté-
ke 0 és szórása 1. Sűrűségfüggvénye ϕ(x).

Standardizálás Egy valószínűségi változó transzformációjaZ = (X−µ)/σ alak-
ra, hogy standard normális eloszlású legyen.

Stirling-formula A faktoriális közelítésére szolgáló képlet nagy számok esetén
(n! ≈

√
2πn(n/e)n).

Sűrűségfüggvény Folytonos valószínűségi változók eloszlását leíró függvény,
amelynek görbéje alatti területe adja a valószínűséget.

Szigma-additivitás (σ-additivitás) Avalószínűség tulajdonsága: megszámlál-
hatóan végtelen sok, páronként kizáró eseményösszegének valószínűsége az ese-
mények valószínűségének összege.

Szorzási szabály Két esemény együttes bekövetkezésénekvalószínűsége: P (AB) =
P (A)P (B|A).

Teljes eseményrendszer Események olyan rendszere, amelynek elemei pá-
ronként kizáróak, és összegük a biztos esemény.

Teljes függetlenség Események egy halmazára igaz, ha bármely részhalma-
zukra teljesül a szorzási tulajdonság.

Teljes valószínűség tétele Módszer egy esemény valószínűségének kiszámí-
tására egy teljes eseményrendszer segítségével.

Unió (Összeg esemény) Az A + B esemény, amely akkor következik be, ha A
vagy B (vagy mindkettő) bekövetkezik.

Valószínűség (P ) Egy esemény bekövetkezési esélyét kifejező számérték 0 és 1
között.

Valószínűségi változó (ξ) Függvény, amely az elemi eseményekhez számérté-
keket rendel.

Véletlen jelenség Olyan folyamat, amelynek kimenetele előre nem jósolható
meg pontosan, de statisztikai törvényszerűségeket követ.
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