3AKAPHATQBKHﬁ YFOPCI;KI/IIZI IHCTUTYT IMEHI ®EPEHIIA PAKOLI 11
Il. RAKOCZI FERENC KARPATALJAI MAGYAR FOISKOLA

Kadenpa maremaTuku Ta ingopmatuku
Matematika és Informatika Tanszék

«ADDITIONAL TOPICS IN CONTEMPORARY MATHEMATICS»
(KYPC JIEKIIIN)

(st ctyneHTiB 2-ro Kypey creriansHocti 014 Cepenns ocsita (MaremaTika))

ADDITIONAL TOPICS IN CONTEMPORARY MATHEMATICS
(Eloadasok)

Hpyeurt (mazicmepcoxutr) | Mesterkepzes (MA)

(ctyminp Bumioi ocBiTH /a felsdoktatas szintje)

01 Ocsita/llenarorika / 01 Oktatas/Pedagogia
(ramy3b 3HaHb / képzési ag)

"Cepeons oceéima (Mamemamuxa)"
"Kozépfoku oktatas (Matematika)"

(ocBiTHs mporpama / képzési program)

beperose / Beregszasz
2025 p. /2025



[TociOHUK 3 MOJATKOBUX PO3AUTIB Cy4acHOI MaTEeMaTHKH TMpU3HAuYeHWUW st cryAeHTiB Il kypcy
(ctynens mMarictpa) 3akapmaTchbKoro yropchbkoro iHCTUTYTY iMeHi Depenima Pakori crierianbHOCTI
014 Cepennst ocBita (MaTemMaThka) ICHHOI Ta 3a04HOi ()OPMHM HABYAaHHS 3 METOIO OpraHizarii
nekuiitHoro kypcey "'/1o1aTkoBi po3aiig cy4acHOi MaTeMaTUKu'.

[TociOHUK TOAUICHWI HAa PO3AUIM, KOXEH 3 SKHX MICTUTh TEOPETHYHI BIJIOMOCTI TEBHOT
MaTeMaTH4HOi cTpyKTypH. [T0CiOHMK BHKIIaJIeHUI aHTITIHCHKOI0 MOBOIO.

Marepian npu3HaYeHWH [UIsi BUKOPUCTAHHS SIK HABYAIbHO-METOJWYHHUI MOCIOHHK 3 JUCHUTUTIHH
" JlomaTKoOBI PO3AUIA Cy4acHOI MaTeMaTHKH "

3aTBepAKEHO /10 BUKOPUCTAHHS Y HAaBYAJILHOMY IPOIECi
Ha 3aciJaHHi Kaeapu MaTeMaTHKH Ta iHPOPMATUKH
(mpotokon Ne 10 Bix «23» yepBHs 2025 poky)

PosrnsiHyTO Ta pexoMeHa0BaHo Pajioro 13 3a0e31eueHHs SIKOCTI BUIIOT OCBITH
3akapnaTchKoro yropchbkoro iHcTuTyTy iMeHi @epenna Pakori 11
(mpotokos Ne7 Bix 26 ceprast 2025 poky)

PexomennoBano 10 BuganHs y enekrponsiii popmi (PDF)
pimenHsaM Buenoi pagu 3akapnaTchKoro yropcbkoro iHCTUTyTYy iMeHi ®@epenna Paxomi 11
(mpotokon Ne8 Bin 28 ceprius 2025 poky)

[Tigrorosneno 1o BuaaHHs y enekTponHii ¢popmi (PDF) kadenaporo matemaTnku Ta iHQOPMATUKH 3
Bunasanuum Biiiom 3akapnaTchbKoro yropcbkoro iHcTuTyTy iMeHi depenna Paxoni |1

Ykiaagau:

CTOUKA MHPOCJIAB BIKTOPOBUY — nomeHT kadeaps MaTeMaTHKH Ta iH(OPMATHKH
3akapnaTchbKOro yropchbkoro iHcTuTyTy iMeHi @epenna Paxori |1

PenenszenTu:
MJIABELIb FOPIM IOPIMOBUY — kaumumaT (i3MKO-MaTeMAaTHYHMX HayK, JIOLEHT Kadempu
kiOepHeTHKH 1 mpukiaaHoi marematuku JIBH3 «YxHY».
MECAPOIII JIIBIA BACWJIIBHA—- xanguaatr ¢izuko-MaTeMaTHUYHUX HayK, JOLEHT Kadeapu
MaTeMaTHKu Ta iHpopmatuku 3Y1.

BianoBinanbHwMii 3a BUTYCK:
Omnexcanap JJOBOII — navansank Bugasaudoro Bigaury 3Y1 im. @.Pakorri 11

3a 3MiCT MOCiOHMKA BIAMOBITAIBHICTh HECYTh PO3POOHUKH.

BunaBuunrBo: 3akapnarchkuil yropcbkuil iHCTHTYT imeHi ®epenna Paxomi Il (ampeca: .
Komryra 6, m. beperose, 90202. Enextponna momrra: foiskola@kmf.uz.ua)

© Mupocaas Croiika, 2025
© Kadeapa marematuku ta inpopmaTuku 3¥I im. ®.Pakoui II, 2025



mailto:foiskola@kmf.uz.ua

Az ADDITIONAL TOPICS IN CONTEMPORARY MATHEMATICS a II. Rakoczi Ferenc Karpataljai
Magyar Fdiskola, az MSc szint II. éves, matematika szakos, nappali és levelezds hallgatoinak
késziilt, a Korszerii matematika valogatott fejezetei c. tantargy alaposabb tanulmanyozasanak és
elsajatitasanak megkonnyitése céljabol.

Ez a jegyzet els6sorban matematika szakos hallgatok szamara késziilt, de hasznos lehet
mindazok szamara, akik barmely més szakon tanulnak matematikat.

A jegyzet fejezetekre van osztva. Minden fejezetben réviden egy téma let kidolgozva,
melyben altalaban fogalmak és alapelvek vannak bemutatva angol nyelven.

Az oktatasi folyamatban torténd felhasznalasat jovahagyta
a II. Rakoczi Ferenc Karpataljai Magyar Féiskola
Matematika és Informatika Tansz¢ke
(2025. janius 23, 10. szam jegyzokonyv).

Megjelentetésre javasolta a II. Rakodczi Ferenc Karpataljai Magyar Féiskola
Mindségbiztositasi Tanacsa
(2025. augustzus 26, 7. szamu jegyz6konyv).

Elektronikus forméban (PDF fajlformatumban) torténd kiadasra javasolta
a II. Rékoczi Ferenc Karpataljai Magyar Fdiskola Tudomanyos Tanacsa
(2025. augustzus 28, 8. szamu jegyzokonyv).

Kiadasra elokészitette a II. Rakoczi Ferenc Karpataljai Magyar Foiskola
Matematika és Informatika Tanszéke és Kiadoi Részlege.

Szerkeszto:

SZTOJKA MIROSZLAV — a II. Rékéczi Ferenc Karpataljai Magyar Féiskola Matematika és
Informatika Tanszékének docense

Szakmai lektorok:
MLAVEC JURIJ — fizika és matematika tudomanyok kandidatusa, docens, az Ungvari Nemzeti
Egyetem Kibernetika és Alkalmazott Matematika Tanszékének docense;

MESZAROS LIVIA - fizika és matematika tudomanyok kandidatusa, II. Réakoczi Ferenc
Karpataljai Magyar Foiskola Matematika és Informatika Tanszékének docense.

A kiadasért felel:

DOBOS Séandor — a II. Rédkoczi Ferenc Karpataljai Magyar Féiskola Kiaddi Részlegének
vezetdje

A tartalomért kizardlag a jegyzet szerkesztoje felel.
Kiadé: a Il. Rakoczi Ferenc Karpataljai Magyar Foéiskola (cim: 90 202, Beregszész,
Kossuth tér 6. E-mail: foiskola@kmf.uz.ua)

© Sztojka Miroszlav, 2025
© A II. Rakoczi Ferenc Karpataljai Magyar Féiskola
Matematika és Informatika Tanszéke, 2025


mailto:foiskola@kmf.uz.ua

Contents

] o1 o =T OSSR 5
2. RING TRROIY ...ttt et reens 7
3. FIEIA TNEOIY ..t ns 9
A, MOTUIE TREOIY ...ttt e e anee s 11
ST G- o] SR I 1T ] Y TSRS 14
6. QUALEINION TNEOIY ...eviieie ettt sreesree e 17
7. Group RING TNEOIY ...vviiieee ettt et snee e 20
8. Group Representation TNEOIY .......cccviiviiecie e 22
9. Matrix Representations OF GIOUPS .........ccveiieiieiieiie et 25

10. Modern Approaches in the Methodology of Teaching Mathematics and
L1 0] 1 4oL oSSR 27

RTINS ... 29



1. Group Theory

Definition of a Group

A group is an algebraic structure consisting of a set G and a binary operation *
defined on G. This structure satisfies the following four axioms:

1. Associativity: Forall a,b,c € G,(a * b) *x ¢ = a * (b * ).

2. Existence of an Identity Element: There exists an element e in G such that for all
a € G,axe =e *xa=a.

3. Existence of an Inverse Element: For each element a in G, there exists an element
a linGsuchthat a * a™! = a™! * a = e, where e is the identity element.

4. Commutativity (for Abelian groups): If the operation * is commutative, i.e., for all

a,binG,a * b = b * a, then the group is called Abelian.

Examples of Groups

1. The Set of Integers Z under Addition: The set Z with the operation of addition
forms an Abelian group, where the identity element is 0, and the inverse element for
any a is —a.

2. The Set of Non-Zero Rational Numbers Q* under Multiplication*: The set Q*

forms an Abelian group, where the identity element is 1, and the inverse element for
.1

any q is .

3. Symmetric Group: For the set {1, 2,3,...,n}, the symmetric group S,, consists of

all possible permutations of this set. It is a non-Abelian group, where the operation is

the composition of permutations.

Subgroups
A subset H € G is called a subgroup of a group G if H itself is a group with the
same operation as in G. This requires that for all a,b € H, the elements a * b

anda~1arealsoin H.



Cyclic Groups
A group G is called cyclic if there exists an element g in G such that every element of
the group can be expressed as a power of g, i.e., for each a in G, there exists an

integer n such thata = g™. The element g is called the generator of the group.

Lagrange's Theorem

For a finite group G, if H is a subgroup of G, then the order (number of elements) of
the subgroup H divides the order of the group G.

This theorem is one of the central results in group theory and has many important

implications in various fields of mathematics.

Group Homomorphisms

A homomorphism from a group G to a group H is a map ¢: G — H that preserves
the group operation, i.e., for all a,b in G, ¢(a * b) = @(a) * @(b). If the
homomorphism ¢ is bijective, it is called an isomorphism, and the groups G and H

are said to be isomorphic.

Applications of Group Theory
Group theory is widely used in various fields of mathematics, physics, and computer
science. It helps in analyzing symmetries in geometric objects, structures in algebraic

systems, and plays a key role in number theory and cryptography.



2. Ring Theory

Ring theory is a branch of abstract algebra that studies rings, which are algebraic
structures equipped with two binary operations: addition and multiplication. A ring R
Is defined as a set equipped with two operations that satisfy the following properties:
1. Addition: The set R is closed under addition, meaning that for any two elements
a,b € R, the suma + b is also in R. Additionally, addition in R must satisfy the
following properties:

- Associativity: (a + b) + ¢ = a + (b + ¢)foralla,b,c € R.

- Commutativity:a + b = b + aforalla,b € R.

- Identity Element: There exists an element 0 € R such thata + 0 = a for all
a € R.

- Additive Inverse: For each a € R, there exists an element —a € R such that
a+ (—a) = 0.
2. Multiplication: The set R is closed under multiplication, meaning that for any two
elements a,b € R, the producta - b is also in R. Multiplication in R must satisfy
the following properties:

- Associativity:  (a-b) -c=a-(b-c) for al abc€R

- Distributivity: Multiplication is distributive over addition; thatis,a - (b + ¢) =
a-b+a-cand(a+b) - c=a-c+b-cforalla,b,c € R.
A ring is called commutative if multiplication is commutative, i.e.,a - b = b - a
foralla,b € R.
Examples of Rings
- The set of integers Z with the usual addition and multiplication is a commutative
ring.
- The set of n X n matrices with real entries is a non-commutative ring.
Subrings and ldeals
- A subring of a ring R is a subset of R that is itself a ring with the inherited

operations from R.



- An ideal of a ring R is a subring | such that for everyr € Randi € I, bothr - i
andi - rareinl.

Ring Homomorphisms

A ring homomorphism is a function f: R — S between two rings R and S that
preserves the ring operations, meaning:

-f(a + b) = f(a) + f(b)foralla,b € R,

-f(a - b) = f(a) - f(b)foralla,b € R,

— f(1g) = 15 if R and S have multiplicative identities.



3. Field Theory

Field theory is a branch of algebra that studies fields, which are algebraic structures
with two operations: addition and multiplication. A field F is a set equipped with two
operations that satisfy the following properties:
1. Addition:

- Closure: For any two elements a,b € F, theirsuma + bisalsoinF.

- Associativity: (a + b) + ¢ = a + (b + c¢)foralla,b,c € F.

- Commutativity: a + b = b + aforalla,b € F.

- Identity Element: There exists an element 0 € F such thata + 0 = a for all
a € F.

- Additive Inverse: For each a € F, there exists an element —a € F such that
a+ (—a) = 0.
2. Multiplication:

- Closure: For any two elements a,b € F, their producta - bisalsoin F.

- Associativity: (a -+ b) - ¢c = a - (b - c)foralla,b,c € F.

- Commutativity:a - b = b - aforalla,b € F.

- Identity Element: There exists an element 1 € F (where 1 # 0) such thata -
1 = aforalla € F.

- Multiplicative Inverse: For each a € F (where a # 0), there exists an element
a"l€ Fsuchthata - a ! = 1.
3. Distributivity:

- Multiplication is distributive over addition; thatis,a - (b + ¢c) = a -b + a -
cforalla,b,c € F.
Examples of Fields
- The set of rational numbers Q with the usual addition and multiplication is a field.
- The set of real numbers R and the set of complex numbers C are also fields.
Subfields and Extensions
- A subfield of a field F is a subset of F that is itself a field with the inherited
operations from F.



- A field extension is a larger field E containing a subfield F. The study of field
extensions often involves analyzing the degree of the extension, which is the
dimension of E as a vector space over F.

Field Homomorphisms

A field homomorphism is a function f: F — G between two fields F and G that
preserves the field operations, meaning:

-f(a + b) = f(a) + f(b)foralla,b € F,

-f(a - b) = f(a) - f(b)foralla,b € F,

- f(1z) = 1;, where 1 and 1, are the multiplicative identities of F and G,
respectively.
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4. Module Theory

Modules are a fundamental concept in abstract algebra, serving as a generalization of
vector spaces over a field. While vector spaces are defined over fields, modules are
defined over rings, allowing for a broader range of algebraic structures. The theory of
modules provides a framework for studying linear algebra in a more generalized
context, where the scalar multiplication is not restricted to fields but can be extended

to rings.

A module over a ring R (with unity) is an abelian group M equipped with a binary
operation called scalar multiplication that associates each elementr € R r and each
element m € M with an element rm € M. The operation satisfies the following

axioms forall r,s € Rand m,n € M:

1. Distributivity over ring addition: r(m +n) =rm+rn
2. Distributivity over module addition: (r + s)m = rm + sm
3. Associativity: (rs)m = r(sm)

4. Unity: 1zm = m1g, where 13 is the multiplicative identity in R,
Examples of Modules

« Vector Spaces: Every vector space is a module where the ring R is a field.

« Abelian Groups as Z-Modules: Any abelian group can be viewed as a module
over the ring of integers Z.

« Matrices as Modules: The set of all m x n matrices over a ring R forms a

module over R.
Submodules

A submodule of a module M over a ring R is a subset N of M that is closed under
addition and scalar multiplication. In other words, N is a submodule if for all m,n €

Nandr € R:

11



e m+neN

e TMEN
Submodules are analogous to subspaces in vector space theory.
Quotient Modules

Given a module M over a ring R and a submodule N of M, the quotient module
M /N is defined as the set of cosets of N in M. The operations on M/N are defined

as follows:

e (M+N)+(n+N)=(m+n)+N
e« T(Mm+N)=(m)+N

The quotient module M /N inherits the module structure from M.
Homomorphisms and Isomorphisms

A module homomorphism between two R-modules M and N is a function f: M —

N that preserves the module operations:

e fm+n)=f(m)+f(n) forallmneM
e frm)=rf(m)forallre Randme M

An isomorphism is a bijective homomorphism, meaning that the two modules are

structurally identical.
Exact Sequences

An exact sequence of modules is a sequence of module homomorphisms:

é...fn__l)Mn

fi
M, 5 M, > M,

that satisfies the condition that the image of each homomorphism is equal to the

kernel of the next:
12



Im(f;) = ker (fi41)

Exact sequences are a key concept in module theory and are used extensively in

homological algebra.
Projective, Injective, and Free Modules

« Projective Modules: A module P is projective if every surjective module
homomorphism onto P splits.

« Injective Modules: A module Q is injective if every injective module
homomorphism from Q can be extended.

« Free Modules: A module is free if it has a basis, meaning it is isomorphic to a

direct sum of copies of the ring R.

13



5. Galois Theory

Galois Theory is a branch of abstract algebra that connects field theory with group
theory, providing profound insights into the solvability of polynomial equations.
Named after the French mathematician Evariste Galois, this theory establishes a
correspondence between field extensions and groups, allowing mathematicians to

understand the roots of polynomials and their symmetries in a structured way.
Field Extensions

A field extension is a pair of fields E and F such that F € E. The field E is called an
extension of F, and F is called the base field. The degree of the extension E over F,

denoted by [E: F], is the dimension of E as a vector space over F.

« Example: The field C of complex numbers is an extension of the field R of

real numbers, and the degree of the extension is [C: R] = 2.
Galois Extensions

A field extension E of F is called a Galois extension if it is both normal and

separable.

« Normality: An extension E is normal over F if every irreducible polynomial in
F[x] that hasarootin E completely factors into linear factors over E.
« Separability: An extension E is separable over F if every element of E is a

root of a separable polynomial over F (a polynomial whose roots are distinct).
Galois Group

The Galois group of a field extension E over F, denoted Gal(E/F), is the group of all
field automorphisms of E that fix F. In other words, it consists of all the bijective

maps o: E = E such that o(a)=a foralla € F .

14



. Example: For the extension Q(v2) over Q, the Galois group Gal(Q(v2) /

Q)has two elements: the identity map and the automorphism that sends V2 to

—/2.
Fundamental Theorem of Galois Theory

The Fundamental Theorem of Galois Theory states that there is a one-to-one
correspondence between the intermediate fields F € K € E and the subgroups of the

Galois group Gal(E /F). This correspondence reverses inclusions:

« If K is an intermediate field, then its corresponding subgroup is Gal(E/K).
« If H is a subgroup of Gal(E/F), then the corresponding intermediate field is
the fixed field Ef, consisting of elements in E that are fixed by all

automorphisms in H.
Solvability by Radicals

One of the most famous applications of Galois Theory is determining whether a
polynomial equation can be solved by radicals (i.e., solutions can be expressed using
a finite number of operations involving addition, subtraction, multiplication, division,
and root extraction). A polynomial is solvable by radicals if and only if its Galois

group is a solvable group.
Applications of Galois Theory
Galois Theory has far-reaching applications in various fields of mathematics:

« Classical Problems: Galois Theory provides solutions to classical problems
such as the impossibility of trisecting an angle or doubling a cube using only a
compass and straightedge.

« Algebraic Number Theory: It plays a crucial role in the study of algebraic

number fields and their ring of integers.

15



« Cryptography: The theory also has applications in modern cryptography,
particularly in the design of certain cryptographic protocols based on finite
fields.

Galois Theory bridges the gap between field theory and group theory, providing deep
insights into the structure of polynomials and their roots. It offers powerful tools for
understanding the solvability of equations and has significant implications across

various areas of mathematics.

16



6. Quaternion Theory

Quaternions are an extension of complex numbers, introduced by Sir William Rowan
Hamilton in 1843. They provide a way to represent rotations in three-dimensional
space and are used in various applications such as computer graphics, robotics, and
physics. Quaternions extend the concept of two-dimensional complex numbers to

four dimensions and are expressed in the form:
q=a+bi+cj+dk

where a, b, ¢, and d are real numbers, and i, j, and k are the fundamental quaternion

units.
Quaternion Algebra
The fundamental quaternion units i, j, and k satisfy the following multiplication rules:

i?=j*=k*=ijk=-1

ij = k,ji = —k
jk =i kj = —i
ki=j,ik =—j

These relations show that quaternion multiplication is non-commutative, meaning

that the order of multiplication matters.

Quaternion Conjugate and Norm

The conjugate of a quaternion g = a + bi + cj + dk is given by:
q=a—bi—cj—dk

The norm of a quaternion q is defined as:

| q I=+ a2 +b? + c2 + d?

17



The norm of a quaternion is always a non-negative real number.
Quaternion Inverse

The inverse of a non-zero quaternion q is given by:

Multiplying a quaternion by its inverse yields the multiplicative identity quaternion,
1+ 0i+0j + Ok.

Quaternions and Rotations

Quaternions are particularly useful in representing rotations in three-dimensional
space. A rotation by an angle 8 around a unit vector u = (u,,u,,u3) can be

represented by the quaternion:

0 0
q = cos (E) + sin (E) (uqil + uyj + uszk)

To rotate a vector v using the quaternion g, we use the operation:
v =quq~?!

where v’ is the rotated vector.

Applications of Quaternions

Quaternions have several important applications in various fields:

« Computer Graphics: Quaternions are used to represent and interpolate
rotations, avoiding the problems of gimbal lock and providing smooth
transitions between orientations.

« Robotics: Quaternions are used to control the orientation of robotic arms and

other mechanical systems.
18



« Physics: In quantum mechanics and relativity, quaternions are used to describe

the spin and orientation of particles.

Quaternions extend complex numbers into four dimensions and provide a powerful
framework for representing rotations in three-dimensional space. Their non-
commutative nature and unique algebraic properties make them an essential tool in

mathematics, physics, and engineering.
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7. Group Ring Theory

Group rings are a significant concept in algebra that arise from the interaction
between group theory and ring theory. Given a group G and a ring R, the group ring
R[G] is a construction that allows the combination of elements of G with coefficients
from R. This construction plays a crucial role in various areas of mathematics,

including representation theory, homological algebra, and number theory.
Definition of Group Rings

Let G be a group and R be aring. The group ring R[G] consists of all finite formal

sums:

2,%8

geG

where a, € R for each g € G, and only finitely many a, are non-zero. The addition

and multiplication in R[G] are defined as follows:

« Addition:

D+ ) Bog=) (@g+hg

gea geG gEeG
. Multiplication:
z g9 |- (2 Bn h) = z (ayBr) (gh)
geaG hea g,hea

Here, the product gh denotes the group operation in G, and a, 8, denotes the product

in the ring R.

20



Examples of Group Rings

Example 1: Consider the group G = Z, = {1,—1} and the ring R = Z (the
integers). The group ring Z[Z,] consists of elements of the forma -1+ b -
(—1),wherea,b € Z.

Example 2: If G is the group of permutations on n elements, S,,, and R = R
(the real numbers), then R[S,,] is the group ring of the symmetric group.

Properties of Group Rings

Group rings inherit various properties from both the group G and the ring R:

Associativity: The group ring R[G] is associative since both the group
operation in G and the multiplication in R are associative.

Distributivity: The distributive property holds in R[G], allowing the
multiplication of elements to distribute over addition.

Identity Element: If R has an identity element, then R[G] also has an identity
element, which is the group identity element multiplied by the ring identity.

Applications of Group Rings

Group rings have numerous applications in various fields:

Representation Theory: Group rings are essential in the study of
representations of groups, where they provide a framework for analyzing group
actions on vector spaces.

Homological Algebra: In homological algebra, group rings are used to define
modules and study their homological properties.

Number Theory: Group rings appear in number theory, particularly in the
study of cyclotomic fields and Galois modules.

Group rings serve as a bridge between group theory and ring theory, providing a rich
structure that is utilized in many branches of mathematics. Their versatility and broad
applicability make them an important topic of study in algebra.

21



8. Group Representation Theory

Group representation theory is a branch of mathematics that studies abstract groups
by representing their elements as linear transformations of vector spaces. This
approach allows the use of linear algebra to investigate and understand group
properties, making it a powerful tool in both pure and applied mathematics, including

physics, chemistry, and computer science.
Definition of Group Representations

A group representation of a group G on a vector space V over a field F is a
homomorphism p: G = GL(V), where GL(V) is the general linear group of invertible
linear transformations of V . In other words, for each element g € G, the

representation assigns a linear transformation p(g): V — V such that:

p(gh) = p(g) - p(h) forall g,h € G,
p(e) = Iy,

where e is the identity element of G and I, is the identity transformation on V.
Examples of Group Representations

. Example 1: Consider the cyclic group G = Z; = {0,1,2} under addition
modulo 3. A representation of Z; on R? could be given by rotation matrices
corresponding to angles 0°, 120°, and 240°.

« Example 2: The symmetric group S,,, which consists of all permutations of n
elements, has a natural representation on an n-dimensional vector space by

permuting the coordinates of vectors.
Types of Group Representations

« Irreducible Representations: A representation p is called irreducible if the

only subspaces of V that are invariant under all p(g) for g € G are {0} and V

22



itself. Irreducible representations are the building blocks of all representations,
analogous to prime numbers in number theory.

Unitary Representations: A representation is called unitary if p(g) is a
unitary operator for every g € G. Unitary representations are important in
physics, particularly in quantum mechanics.

Permutation Representations: A representation derived from the action of ¢
on a set X by permuting its elements. These are particularly useful in studying

symmetries and combinatorial structures.

Characters of Group Representations

The character of a group representation p is a function y,: G - F defined by:

X,(g9) =Tr(p(g)),

where Tr denotes the trace of the linear transformation p(g). Characters are a crucial

tool in studying representations, as they provide significant information about the

structure of the representation.

Applications of Group Representations

Group representations have a wide range of applications across various fields:

Physics: Group representations are used to describe the symmetries of physical
systems, particularly in guantum mechanics and particle physics.

Chemistry: Molecular symmetries can be analyzed using group
representations, aiding in the understanding of chemical bonding and
spectroscopy.

Cryptography: Representations of groups play a role in the study of
cryptographic algorithms, particularly in areas like error-correcting codes and

public-key cryptography.
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Group representation theory provides a bridge between abstract algebra and linear
algebra, offering a robust framework for understanding the structure and behavior of
groups. Its applications in various scientific disciplines underscore its importance and

utility in both theoretical and practical contexts.
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9. Matrix Representations of Groups

Matrix representations of groups are a specific type of group representation where the
elements of a group are represented as matrices. This approach allows us to apply the
tools of linear algebra to study group structures and their properties. Matrix
representations are fundamental in various areas of mathematics and physics,

especially in quantum mechanics, crystallography, and the theory of symmetry.
Definition of Matrix Representations

A matrix representation of a group G on a vector space V over a field F is a
homomorphism p: G = GL,,(F), where GL,,(F) is the general linear group of n x n
invertible matrices over F. This means that each element g € G is associated with

an invertible matrix p(g) such that:

p(gh) = p(9) - p(Wforall g,h € G,
p(e) = I,

where e is the identity element of G and I, is the n X n identity matrix.
Examples of Matrix Representations

« Example 1: Consider the cyclic group G =7, ={0,1} . A matrix

representation of Z, over R could be given by the matrices:

@ =n=( Y= Y

« Example 2: The symmetric group S3, which consists of all permutations of
three elements, has a standard matrix representation on R® by permuting the

coordinates of vectors.
Properties of Matrix Representations

Matrix representations inherit the properties of the underlying group:
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Linearity: The homomorphism p preserves the group operation, allowing the
multiplication of matrices to reflect the group operation.

Invertibility: Since each p(g) is an element of GL,(F), it is invertible,
meaning each group element corresponds to an invertible matrix.

Dimension: The dimension of the matrix representation is determined by the

size of the matrices, which corresponds to the dimension of the vector space V.

Applications of Matrix Representations

Matrix representations are essential in many scientific and mathematical fields:

Physics: In quantum mechanics, matrix representations of groups describe the
symmetries of physical systems, such as rotations and reflections.

Chemistry: Molecular symmetries can be represented using matrix
representations, which are crucial in understanding chemical bonding and
molecular vibrations.

Computer Science: In computer graphics, matrix representations are used to

model transformations, including rotations, translations, and scaling.

Matrix representations provide a concrete and computationally effective way to study

group structures through linear algebra. Their applications extend across various

disciplines, making them a central concept in both theoretical and applied

mathematics.
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10. Modern Approaches in the Methodology of Teaching

Mathematics and Informatics

In the contemporary landscape of mathematics and informatics education, there has been a
paradigmatic shift from traditional teacher-centered instruction toward more student-centered,
constructivist, and technology-integrated methodologies. Modern pedagogical approaches
emphasize not only the acquisition of theoretical knowledge but also the development of higher-
order cognitive skills, including critical thinking, problem-solving, algorithmic reasoning, and
collaborative competence. This transformation reflects a growing recognition of the complex
demands placed on learners in the 21st century, where mastery of abstract concepts must be coupled

with the capacity to apply them in dynamic, real-world contexts.

One of the most prominent frameworks in this evolution is problem-based learning (PBL),
which situates knowledge acquisition within authentic, often interdisciplinary problem scenarios.
By confronting students with open-ended tasks, PBL fosters the integration of mathematical
reasoning and computational thinking while simultaneously cultivating metacognitive strategies and
self-directed learning. Complementary to PBL, the flipped classroom model reconfigures the
traditional temporal allocation of instructional content. Foundational theoretical materials are
engaged with outside the lecture environment, enabling in-class sessions to be devoted to active
experimentation, guided inquiry, and collaborative analysis. This reallocation not only increases
cognitive engagement but also facilitates immediate formative assessment and targeted instructional
feedback.

Modern informatics pedagogy further emphasizes the cultivation of computational
thinking as an essential epistemic tool. Computational thinking encompasses the systematic
decomposition of problems, algorithmic design, abstraction, and iterative evaluation, which
collectively provide a rigorous framework for approaching complex mathematical and
computational challenges. Integrating computational thinking into both mathematics and
informatics curricula necessitates deliberate scaffolding strategies, whereby abstract concepts are

incrementally connected to computational models, simulations, and algorithmic representations.

The deployment of digital tools and interactive technologies constitutes another critical
component of contemporary methodology. Advanced software platforms, simulation environments,
and collaborative online spaces extend the cognitive and operational capacities of students, enabling

them to visualize abstract structures, manipulate variables dynamically, and engage in iterative
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experimentation. These technological affordances, when strategically aligned with pedagogical
objectives, not only enhance comprehension but also cultivate intrinsic motivation and a research-

oriented mindset.

Moreover, contemporary teaching frameworks underscore the importance of formative
assessment as an integral component of instructional design. Continuous assessment mechanisms,
including peer evaluation, self-assessment, and real-time feedback during interactive exercises,
provide both instructors and students with critical data to guide pedagogical adjustments, remediate

conceptual misunderstandings, and reinforce the iterative development of expertise.

Ultimately, the modern methodology of teaching mathematics and informatics is
characterized by an intricate interplay between theoretical rigor, applied problem-solving,
technological facilitation, and learner-centered engagement. It is predicated on the understanding
that effective instruction must simultaneously advance cognitive competence, procedural fluency,
and metacognitive awareness, thereby preparing students not merely to perform computations but to

conceptualize, model, and innovate within complex systems.
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